

Factors Affecting Spatial Resolution		
Detector pitch: The detector pitch is the center-to-center spacing of the detec-		
the ray spacing; for fourth-generation scanners, the detector pitch influences the		
view sampling.		
Detector aperture: The detector aperture is the width of the active element of		
of the image, and it improves spatial resolution at all frequencies.		
Number of views: The number of views influences the ability of the CT image		
to convey the higher spatial frequencies in the image without artifacts (see Fig. 13-		
23). Use of too few views results in view anasing, which is most noticeable roward the periphery of the image		
<i>Number of rays:</i> The number of rays used to produce a CT image over the same		
FOV has a strong influence on spatial resolution (see Fig. 13-22). For a fixed FOV,		
the number of rays increases as the detector pitch decreases.		
geometric unsharpness in the detected image and reduce spatial resolution. The		
influence of focal spot size is very much related to the magnification of an object to		
be resolved.		
focal spot. Because of the need to scan completely around the patient in a fixed-		
diameter gantry, the magnification factors experienced in CT are higher than in		
radiography. Magnification factors of 2.0 are common, and they can reach 2.7 for		
the entrant surfaces of large patients.		
cranial-caudal axis. Large slice thicknesses clearly reduce spatial resolution in the		
cranial-caudal axis, but they also reduce sharpness of the edges of structures in the		
transaxial image. If a linear, high-contrast object such as a contrast-filled vessel runs		
of slice thickness. However, if it traverses through the patient at an angle, its edges		
will be increasingly blurred with increased slice thickness.		
Slice sensitivity profile. The slice sensitivity profile is quite literally the line		
spread function in the cranial-caudal axis of the patient. The slice sensitivity profile	Ref: Bushberg	40
is a more accurate descriptor or the site theories.		

Projects – schedule	
Talk to me to define project BEFORE Oct 28	
Report on outline of your project BEFORE Nov 12	
Including – outline of literature search	
(words used in search, papers found, etc)	
- endnote print out of all papers in search	
(you read all abstracts of those listed)	
- list of papers skimmed in more detail.	
- list of papers read completely	
Plan – papers to read in next two weeks	
- work with B. Pogue on strategic changes.	
Final report written by Dec 8 or before.	
	48